Influenza Virus Reassortment Is Enhanced by Semi-infectious Particles but Can Be Suppressed by Defective Interfering Particles
نویسندگان
چکیده
A high particle to infectivity ratio is a feature common to many RNA viruses, with ~90-99% of particles unable to initiate a productive infection under low multiplicity conditions. A recent publication by Brooke et al. revealed that, for influenza A virus (IAV), a proportion of these seemingly non-infectious particles are in fact semi-infectious. Semi-infectious (SI) particles deliver an incomplete set of viral genes to the cell, and therefore cannot support a full cycle of replication unless complemented through co-infection. In addition to SI particles, IAV populations often contain defective-interfering (DI) particles, which actively interfere with production of infectious progeny. With the aim of understanding the significance to viral evolution of these incomplete particles, we tested the hypothesis that SI and DI particles promote diversification through reassortment. Our approach combined computational simulations with experimental determination of infection, co-infection and reassortment levels following co-inoculation of cultured cells with two distinct influenza A/Panama/2007/99 (H3N2)-based viruses. Computational results predicted enhanced reassortment at a given % infection or multiplicity of infection with increasing semi-infectious particle content. Comparison of experimental data to the model indicated that the likelihood that a given segment is missing varies among the segments and that most particles fail to deliver ≥1 segment. To verify the prediction that SI particles augment reassortment, we performed co-infections using viruses exposed to low dose UV. As expected, the introduction of semi-infectious particles with UV-induced lesions enhanced reassortment. In contrast to SI particles, inclusion of DI particles in modeled virus populations could not account for observed reassortment outcomes. DI particles were furthermore found experimentally to suppress detectable reassortment, relative to that seen with standard virus stocks, most likely by interfering with production of infectious progeny from co-infected cells. These data indicate that semi-infectious particles increase the rate of reassortment and may therefore accelerate adaptive evolution of IAV.
منابع مشابه
Defective interfering virus associated with A/Chicken/Pennsylvania/83 influenza virus.
The A/Chicken/Pennsylvania/1/83 influenza virus, isolated from a respiratory infection of chickens, is an avirulent H5N2 virus containing subgenomic RNAs (W.J. Bean, Y. Kawaoka, J.M. Wood, J.E. Pearson, and R.G. Webster, J. Virol. 54:151-160, 1985). We show here that defective interfering particles are present in this virus population. The virus had a low ratio of plaque-forming to hemagglutina...
متن کاملInhibition of infection spread by co-transmitted defective interfering particles
Although virus release from host cells and tissues propels the spread of many infectious diseases, most virus particles are not infectious; many are defective, lacking essential genetic information needed for replication. When defective and viable particles enter the same cell, the defective particles can multiply while interfering with viable particle production. Defective interfering particle...
متن کاملDefective interfering particles of respiratory syncytial virus.
A multiplicity-dependent interference was observed in respiratory syncytial virus preparations (Randall strain) grown in HEp-2 cells, and the factor mediating this interference was characterized. Cloned virus did not demonstrate this multiplicity-dependent interference, but its replication was shown to be inhibited by the interfering factor by assays of reduction of infectious yield assay, the ...
متن کاملConstruction of Influenza A/H1N1 Virosomal Nanobioparticles
Background and Aims: Influenza is one of the main respiratory infections of humans, responsible for 300,000–500,000 annual deaths world-wide. Vaccination is one of the best ways to prevent infections including influenza. Influenza virosomes are virus-like particles, which retain the cell binding and membrane fusion properties of the native virus, but lack the ribonucleoprotein (RNP). A vi...
متن کاملA Sensitive Neutralization Assay for Influenza C Viruses Based on the Acetylesterase Activity HEF Glycoprotein
Influenza C virus possesses specific neuraminate-O-acetylesterase as a receptor-destroying function. This enzymatic activity of the viral glycoprotein HEF (Hemagglutinin, esterase activity and fusion factor) can be visualized in situ by the use of distinct color substrates. Hereby the localization, as well as the quantity of synthesized HEF protein is detectable. We further developed the estera...
متن کامل